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Abstract

The livestock dung seed bank (DSB) plays an important role in the regeneration and sus-

tainability of grasslands in grazing ecosystems. As global precipitation patterns change,

the productivity of the above ground vegetation (AGV) in semiarid and arid regions may

be substantially affected, as will both the size and composition of the livestock DSB.

However, the effects of altered precipitation patterns remain to be determined. Dung

was collected for three consecutive years (2018–2020) from horses, cattle and sheep in

the desert region of the Qaidam basin, China. The seedling emergence method was

used to examine species richness and seed density in the DSB, and the structure and

composition of the DSB and the AGV were also investigated. Combined with precipita-

tion data, a structural equation model was used to explore how precipitation affects the

livestock DSB by quantifying changes in the AGV in the basin. The results showed that

horses [seedling density 5.32 (2018), 6.30 (2019) and 7.44 (2020) g�1 dung] had greater

seed dispersal potential than cattle (3.91, 5.08 and 6.42 g�1 dung) or sheep (0.88, 1.32

and 2.96 g�1 dung), indicating that horse dung contributes the most to the AGV in the

Qaidam basin. Furthermore, the seed composition of the DSB differed substantially

from species of the AGV, implying that the DSB can promote the diversification of

grasslands. An increase in precipitation increased both the productivity of the AGV (and

hence livestock forage) and the size and composition of the DSB. These results highlight

that the DSB is an essential driver of the development of grasslands in arid areas and

that the indirect effect of precipitation on the livestock DSB for the regeneration and

conservation of grasslands should be considered in arid regions.
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1 | INTRODUCTION

When mature plant seeds are consumed by foraging livestock, some

of these seeds survive passage through the digestive tract and are

ultimately deposited in dung. These viable seeds in herbivore faeces

constitute the dung seed bank (DSB) (Wang & Hou, 2021a). The

composition of the DSB depends on the rangeland composition and

the selective feeding by livestock and can benefit plant species in vari-

ous ways (Wang & Hou, 2021b).

Seed dispersal through endozoochory is an important source of

vegetation renewal and a supplement to the soil seed bank (SSB; Wang

et al., 2021). Moreover, the nutrients and organic matter in livestock
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dung promote seedling emergence and growth (Nchanji &

Plumptre, 2003; Traveset et al., 2001; Woldu & Saleem, 2000). Mean-

while, livestock dung can also hamper the germination of species char-

acteristic to nutrient-poor environments, and in some cases the

livestock avoids places with dung, so its deposition pattern can also

influence future grazing patterns (MacLusky, 1960; Yu, Xu, Muham-

mad, & Long, 2013). Accordingly, the DSB can change the grassland

vegetation composition and promote grassland patch formation by

influencing the SSB composition and seedling density (Elisabeth &

Han, 2003; Myers et al., 2004; Yu, Xu, Muhammad, & Long, 2013).

Hence, an appreciation of the composition, size (e.g., the number of

seeds that can germinate per unit weight of dung), and ecological char-

acteristics of the DSB is essential for studies of grazing ecology

(D'Hondt & Hoffmann, 2015).

Seed quantity and the range of seed species dispersed by herbi-

vores can considerably influence the dynamics and species richness of

grazed ecosystems (Pakeman et al., 2002). Faecal sedimentation,

dung-borne seed germination, and seedling establishment in faeces

increase plant species richness and influence the large-scale spatial

community composition of grazed ecosystems (Malo & Suárez, 1995).

Specifically, the similarity of plant communities between different

types of grazed grasslands is increased, and diversity among grassland

plants within local communities is fostered (Malo & Suárez, 1995). It is

assumed that seed ingestion—specifically the seed quantity and the

range of seed species—by livestock increases plant species richness

and influences the large-scale spatial community composition of

grazed ecosystems by intensifying the intercommunity seed flow.

However, the relationship between the DSB and above ground vege-

tation (AGV) characteristics remains unclear, as does the mechanism

by which this relationship is maintained (Albert et al., 2015).

In the context of global climate change, there will be fewer pre-

cipitation events in certain geographic regions yet larger per-event

rainfall volumes, and the frequency of extreme precipitation events

will also increase globally (Intergovernmental Panel on Climate

Change, 2013). Precipitation correlates positively with grassland pro-

ductivity (Gamoun, 2016; Song et al., 2019). Changes in precipitation

patterns can have a notable impact on the structure and species

dynamics of grassland ecosystems, as precipitation is the main limiting

factor of grassland productivity, especially in semiarid and arid regions

(Noy-Meir, 1973; Reynolds et al., 2004).

Grazing is the most commonly used and effective grassland man-

agement method (Hou & Yang, 2006). In grassland-grazing ecosys-

tems, precipitation affects the food resources available to livestock by

changing the composition and structure of the AGV and seed produc-

tion, thereby regulating the size and composition of the DSB. Grazing

management and precipitation patterns have been shown to alter the

coverage of grassland species, the composition of plant communities

and even the development of entire grassland ecosystems (Gamoun

et al., 2011; Gamoun et al., 2012).

Located in northwestern China and the northeastern part of the

Qinghai-Tibetan Plateau, the Qaidam basin (plateau-type basin) has

been identified as the most climate-sensitive region across the entire

Qinghai-Tibetan Plateau, which is the largest grazing ecosystem in

Eurasia (Cai et al., 2014). The region is mainly characterised by an

extremely arid desert climate (Zhao et al., 2020). Based on meteorologi-

cal data, precipitation in the Qaidam basin increased continuously from

1980 to 2015 (an interannual increase of over 10%), indicating a change

to a wetter yet still arid-type climate (Zhang et al., 2019). Increased pre-

cipitation will inevitably impact the production of local livestock. Previ-

ous studies of indigenous animals and livestock on the Qaidam basin

have mostly focused on the impact of precipitation on the composition

and structure of the AGV (Li, 2018; Xu & Yang, 2013). However, against

the backdrop of changing precipitation patterns as well as the DSB as a

potential force for grassland regeneration (Wang & Hou, 2021a; Yu

et al., 2012), research on the effect of precipitation on the properties of

the livestock DSB has largely lagged.

In this study, we collected dung from livestock (i.e., horses, cattle

and sheep) in the Qaidam basin desert grassland during three continu-

ous years (2018–2020) and determined the size and composition of

the DSB as well as the characteristics of the AGV over the same

period. Combining these factors with precipitation data, we hypo-

thesised that precipitation indirectly promotes the size and composi-

tion of the livestock DSB by directly increasing the seed yield,

richness and diversity of the AGV. The objectives of this research

were to study: (i) the changing characteristics of the composition and

structure of the AGV in the basin desert grassland under changing

(e.g., increasing) precipitation conditions; (ii) the size and species com-

position of the DSB from different livestock species and the relation-

ship between the DSB and AGV; and (iii) the mechanisms of

precipitation effects on the livestock DSB by quantifying changes in

the AGV characteristics. The results provide an improved understand-

ing of the mechanisms of grass–animal interactions under climate

change in semiarid and arid regions throughout the World.

2 | MATERIALS AND METHODS

2.1 | Study area

Covering an area of ~5000 ha, the study site is located in the northern

part of the Qaidam basin (38�720 N–38�840 N, 94�460 E–94�980 E;

~3520 m a.s.l.; Figure 1) and is grazed by horses (Equus caballus,

ca. 100 head), cattle (Bos taurus, ca. 200 head), and sheep (Ovis aries,

ca. 400 head) year-round. The most common management method

for grazing in this area is nomadic, where transhumant flocks move

seasonally with their herders between fixed warm (May–October) and

cold (November–April) season pastures. Wild ungulates are rarely

seen in the sampling site, and livestock is evenly distributed across

the landscape. Owing to an adjustment in the local government's graz-

ing policy in recent years, the stocking rate in this area has remained

at a moderate level (Wang et al., 2018). Furthermore, there are no

large-scale enclosures in this area, given that fences undermine biodi-

versity targets (Sun et al., 2021). The climate type is inland, extremely

arid and cold, with an annual average temperature of ~3.5�C (from

�12�C in January to +16�C in July). The annual average sunshine

duration is >3000 h, and the evaporation rate is high (~1500 mm).
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Vegetation is sparse and arid desert grassland, with single species and

a simple structure consisting mainly of shrubs, semi-shrubs and herbs

with high drought resistance, including a large proportion of halo-

phytes. The semi-desert plant community is clustered, especially near

shrubby and thorny patches, where a lower intensity of grazing occurs

(Hadinezhad et al., 2021). The soil type is saline desert soil (Liu, 1962).

The average annual precipitation is ~80 mm and is mostly concen-

trated from April to October (>90% of the annual precipitation), with

the highest precipitation occurring in August (Figure 2a). Meteorologi-

cal data provided by the local weather station revealed that, since

2018, precipitation at the study site (peak period from July to

September) has increased annually (Figure 2b).

2.2 | Assessment of the AGV

The AGV was surveyed in mid-August of 2018, 2019 and 2020 at the

study site. Owing to unique climatic conditions and vegetation phe-

nology, the species richness, biomass and seed production of the AGV

were at their peak (~35 species) during this period, which reflects the

maximum productivity of the grassland at the study site (Li, 2018).

The transect sampling method was used to investigate the char-

acteristics of AGV (Hu et al., 2019; Hu et al., 2020). At a site where

livestock dung was densely distributed, three planting lines were

selected (at 40-m intervals), and three quadrats (2 m � 2 m, at 40-m

intervals) were established for each line. Therefore, each year com-

prised nine quadrats (9 replicates, 3 lines � 3 quadrats, n = 9). Species

richness (the number of plant species) and density were recorded for

each quadrat (2 m � 2 m) during each year, as well as mature seed

mass (i.e., seed yield, the mass of mature seeds per square metre,

g m2) and AGV (i.e., biomass harvest not including seeds) were col-

lected and dried to a constant weight at 65�C.

2.3 | Livestock dung collection

Mid-August to mid-September is the peak period of plant seed matu-

ration at the study site. During this period, plants retain a large num-

ber of mature seeds, which constitute the canopy seed bank

(Oudtshoorn & Rooyen, 1998). All livestock had access to seed-

bearing vegetation because the grazing animals were evenly distrib-

uted across the landscape throughout the study.

From mid-August to mid-September of 2018, 2019 and 2020

(i.e., the peak of seed maturation), samples of fresh dung (newly defe-

cated) from each horse (~3.5 kg, 82.40% water content), cattle

(~3.5 kg, 84.29% water content) and sheep (~4.5 kg, 65.54% water

content) were collected near the quadrat. Individual dung samples

from each species were pooled evenly, placed in a clearly marked can-

vas bag, and transported to the laboratory. All samples were oven-

dried at 35�C for ~72 hr to prevent decay and premature seed

F IGURE 1 The study site in the Qaidam basin, China. Wiley acknowledges that the borders within the figure are subject to multiple territorial
claims [Colour figure can be viewed at wileyonlinelibrary.com]
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germination. Importantly, drying at this temperature does not sub-

stantially affect the germination potential of seeds in dung (Wang

et al., 2019). All dried dung samples for each livestock type during

each year were then divided into nine equal subsamples (nine repli-

cates, 300 g per subsample) and stored in the dark at room tempera-

ture before subjecting them to the germination assay.

2.4 | Germination to assess the livestock DSB

The seedling germination method (An et al., 2020; Ter Heerdt

et al., 1996) was used to determine the species composition and size

of the DSB. Dried dung (300 g, gently compressed without damage)

was mixed with ~50 g of sterilised sand and potted in a 2-cm layer

over 5 cm of vermiculite. Pots were placed in the yard of a local

herdsman in Qaidam basin under natural conditions. Ten pots con-

taining only sterilised sand and vermiculite were placed alongside the

dung pots as controls for wind-blown seeds or other forms of seed

contamination. A total of 91 pots (3 years � 3 livestock species� 9

replicates +10 controls) were obtained. Seedlings were watered twice

daily from March until September 2020. The experiment ended

6 months later when no substantive new germination had been

detected for 2 weeks (Malo, 2000). Emerging seedlings were recorded

and removed as soon as they could be identified or were transplanted

into separate pots for later identification. Whenever seedlings were

removed, the dung/sand mix sample was gently stirred to facilitate

additional germination of buried seeds (He et al., 2021).

2.5 | Diversity and similarity indices

The number of emerged seedlings (seedlings g�1 dung) and the spe-

cies richness (species g�1 dung) were determined based on data

collected from nine replicates of each dung sample. For each seedling

pot or quadrat, a Shannon diversity index (H0) was calculated as

follows:

H0 ¼�
XS

i¼1

pi1npi, ð1Þ

Where: pi is the relative proportion of species of the whole community

(in this study, the community refers to the pot/quadrat), and s is the

total number of species for each dung sample/quadrat.

The composition of both the DSB and AGV was compared

between different years by a non-metric multidimensional scaling

analysis (using PC–ORD 5.0 for Windows software: Gleneden Beach,

OR) with a Raup–Crick dissimilarity matrix (Plue et al., 2020; Raup &

Crick, 1979). The ordination result was considered acceptable for a

stress value of <0.05.

2.6 | Data analysis

Data for AGV/dung seedling species density, richness and diversity

were log10-transformed with the assumption of normality and homo-

geneity of variances. Precipitation (i.e., 2018, 2019 and 2020) and

livestock type (i.e., horse, cattle, and sheep) were treated as fixed

effects. A two-way analysis of variance was used to assess differences

in dung seedling density and AGV density, species richness and the

effects of precipitation and livestock type on species diversity. A

Shapiro–Wilk test was used to test the normality of data before com-

paring mean values. The level of significance used was p < 0.05. Error

bars and numbers following averages denote standard error (SE). Anal-

ysis of variance was conducted with the Statistical Package for the

Social Sciences (SPSS) (version 26.0 for Windows; SPSS, Inc., Chi-

cago, IL).

F IGURE 2 Mean precipitation from 2008 to 2017 (a), and monthly precipitation in 2018, 2019 and 2020 (b). The shaded section in each
graph corresponds to the peak period of precipitation at the study site
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Structural equation modelling was used to estimate the effect of

precipitation changes on the AGV biomass and DSB (based on dung

seedling density). First, an a priori conceptual model was constructed

assuming that precipitation indirectly promotes the size and composi-

tion of the livestock DSB by directly increasing the productivity

(e.g., biomass) of the AGV. A chi-squared test was used to evaluate

the model's fit where 0 ≤ χ2/df ≤ 2 and 0.05 < p ≤ 1 indicate a good

fit. A large p-value (>0.05) indicated that the data's covariance struc-

ture did not differ significantly from the expected model

(Grace, 2006). Structural equation modelling analyses were performed

using AMOS 24.0 (Arbuckle, 2010).

3 | RESULTS

3.1 | AGV richness, density, biomass, diversity and
seed yield

The species richness, density, biomass, diversity and seed yield of the

AGV increased significantly during the 3-year study period (Figure 3).

Furthermore, precipitation and the interaction between precipitation

and livestock, but not livestock alone, had a significant impact on the

characteristics of the AGV (Table 1).

3.2 | Species germinated from dung

Thirty-four herb species germinated from the DSB samples, rep-

resenting 13 families (Poaceae, Leguminosae, Chenopodiaceae,

Asteraceae, Zygophyllaceae, Brassicaceae, Tamaricaceae,

Plumbaginaceae, Ephedraceae, Polygonaceae, Rosaceae, Plantaginaceae,

Iridaceae; Table 2). Essentially, all the common plant species in the study

area were detected in the DSB, suggesting that, in grazing ecosystems

in arid regions, seeds from all plants (especially dominant/common spe-

cies) may have the potential to survive transit through the livestock

digestive tract and become dispersed.

During the 3-year study period, horse dung was found to contain

the greatest number of germinated seeds, with an average density of

viable (more likely to germinate) seeds of 5.32 (2018), 6.30 (2019) and

7.44 (2020) g�1 dung, which was significantly greater than the

corresponding values for dung samples of cattle (3.91, 5.08 and

6.42 g�1 dung) and sheep (0.88, 1.32 and 2.96 g�1 dung) (Figure 4).

Moreover, the horse dung seedling richness and diversity values were

significantly greater than the corresponding values for cattle and sheep

dung. For each livestock species, the dung seedling density, richness and

diversity increased significantly over the three consecutive years. Both

precipitation and individual livestock species, and their interaction, had

significant effects on dung seedling properties (Table 1).

3.3 | Comparison of the DSB and AGV

An ordination diagram revealed differences in the plant species com-

position between dung seedlings and AGV for each year with distinct

clustered point-clouds (Figure 5), as dung seedlings and AGV clustered

together, respectively, implying that the DSB has the potential to

increase the heterogeneity of the AGV near the microsites of the

dung pieces.

3.4 | Relationship between precipitation, AGV and
the livestock DSB

Precipitation had a significant direct effect on the production of AGV

(standardised path coefficient = 0.88; p < 0.0001; Figure 6), and a sig-

nificant indirect effect on livestock dung seedling density (0.32), rich-

ness (0.27) and diversity (0.24) (all p < 0.05). These findings verified

our hypothesis that precipitation indirectly promotes the size and

composition of the livestock DSB by directly increasing the biomass,

richness and diversity of the AGV.

4 | DISCUSSION

4.1 | Effect of precipitation on AGV

Precipitation is the most important factor limiting grassland produc-

tion in arid regions (Song et al., 2019). We found that, with an increase

in precipitation, the abundance, density, biomass, diversity and seed

yield of the AGV increased significantly. This phenomenon has also

been verified in other arid regions (Gherardi & Sala, 2018; Huxman

et al., 2004; Lehouerou et al., 1988). The reason may be that an

increase in precipitation leads to the advancement of the greening

period of plants and the postponement of the withering period

(Ganjurjav et al., 2020); that is, precipitation can prolong the plant

growth period and ultimately increases the aboveground biomass. In

F IGURE 3 Above ground vegetation richness, density, biomass,
diversity and seed yield during 2018–2020. For each category,
columns with different upper-case letters are significantly different
between different years (p < 0.05)
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addition, moisture is a prerequisite for seed germination (Wang

et al., 2020). Hence, in arid regions, precipitation promotes the germi-

nation of seeds in the SSB, improves the efficiency of SSB conversion

to AGV, and thereby increases the abundance and species diversity of

the AGV (Figure 3) (Hu et al., 2019).

It is generally believed that, because of the compensatory growth

strategy of plants, moderate grazing (i.e., at this study site) can

increase grassland species diversity and maintain grassland health

(intermediate disturbance hypothesis) (Gao & Carmel, 2020;

Grime, 2006). However, we found that grazing did not significantly

affect the composition and structure of the AGV during the observa-

tion period (Table 1). This may be because, in semiarid and arid

regions, the impact of grazing on grasslands is offset by precipitation.

It further shows that precipitation is the dominant factor affecting

grassland stability in grazing ecosystems in semiarid and arid regions

(Gherardi & Sala, 2018).

4.2 | Size and composition of the livestock DSB

In this study, the seedling density in dung increased significantly over

the three consecutive years for each livestock species (Figure 4). As

precipitation enhanced plant growth, it also increased seed production

(Figure 3). Therefore, it would be expected that seed availability

would correlate directly with the number of seeds found in

herbivore dung.

The size of the DSB can be affected by livestock species, the

amount of seed intake by livestock, and the physical and chemical

properties of the faeces (Miloti�c & Hoffmann, 2016), in addition to

seed traits (Pakeman et al., 2002). In this study, we found that the

number of germinated seeds in the dung of horses (caecal digester)

was greater than that in the dung of cattle (large ruminant) or sheep

(small ruminant) during all 3 years (Table 2; Figure 4), which is consis-

tent with the findings of Wang & Hou (2021a). Compared with horses

and cattle, the chewing method of sheep causes the most severe dam-

age to seeds. For example, in the central region of Spain, fragments of

chewed seeds of the Mediterranean shrub Retama sphaerocarpa (seed

mass of 77 mg) are often found in sheep dung (Manzano et al., 2005).

In ruminants, plant seeds are affected not only by chewing and rumen

digestion but also by the rumination process, which is quite destruc-

tive (Wang et al., 2017). In contrast, horses are monogastric animals in

which the food is chewed particularly roughly (Zang, 2015), but there

is no rumination-related damage to the seeds. However, Mouissie

et al. (2005) reported that, in the heathlands in the northern

Netherlands, the mean seedling density of cattle dung was greater

than that of horse dung. Subtle variations in grazing behaviour and

diet selection could explain some of the observed differences in ger-

minating seed content between cattle and horse dung (Malo, 2000). In

addition, herbivore species have interspecific differences in functional

traits, such as habits, size, age, mating frequency, cognition and forage

preferences, which may result in differences in dung seedling density

and the seed dispersal service they provide (Zwolak, 2017).

4.3 | Comparison of the DSB and AGV

As a result of differences in the grazing regime (e.g., nomadic), animal

species, environmental factors and the spatial distribution of species,

the effects of grazing on the similarity between the DSB and AGV are

debatable (Agra & Ne'eman, 2012; Peco et al., 1998; Ungar &

Woodell, 1996). For example, Wang & Hou (2021a) found that the

similarity index between the DSB and the corresponding AGV in

alpine meadows was significantly lower than that in the desert grass-

lands. Wang et al. (2019) found that the relationship between the tan

sheep DSB and AGV was weak on the Loess Plateau of China. The

present study showed a high dissimilarity between the DSB for each

of the three livestock species and the AGV during the 3-year experi-

mental period (Figure 5), indicating that the DSB had the potential to

increase the heterogeneity of the AGV near the microsites of the

dung pieces (Wang & Hou, 2021b; Yu, Xu, Muhammad, &

Long, 2013). Meanwhile, the livestock has long gut retention times

and can move several kilometres every day (Manzano et al., 2005;

TABLE 1 Effect of precipitation and
livestock species on above ground
vegetation and dung seed bank
properties (n = 9)

Item

Precipitation Livestock Precipitation � livestock

F p-value F p-value F p-value

Above ground vegetation

Density 47.23 0.041* 29.71 0.0533 2.75 0.039*

Richness 8.33 0.029* 2.47 0.073 6.43 0.045*

Diversity 1.78 0.032* 64.26 0.061 8.66 0.043*

Seed yield 3.63 0.034* 33.74 0.056 4.76 0.036**

Biomass 5.32 0.00043*** 57.73 0.058 37.256 0.0028**

Dung seedlings

Density 19.00 0.00086*** 32.17 0.023* 21.75 0.0031*

Richness 12.13 0.0063** 4.38 0.034* 1.43 0.041*

Diversity 7.43 0.0078** 64.26 0.047* 47.66 0.043*

***p < 0.001; **p < 0.01; *p < 0.05
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F IGURE 4 Dung seedling density (seedlings g�1 dung), richness
and diversity among livestock species during 2018–2020. Columns
with different lower-case (uppercase) letters are significantly different
between years (livestock type) for each livestock type (year) (p < 0.05)
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Wang et al., 2016), so at least some of the dung seeds delivered near

our quadrats would be expected to be from plants located several

kilometres away—a potential explanation for the differences between

the composition of the vegetation and that of the dung.

The relationship between the DSB and AGV can be influenced by

the selective feeding of livestock (Bagchi & Ritchie, 2010), physical

and chemical properties of faeces (Miloti�c & Hoffmann, 2016), and

microhabitat properties at dung (and hence seeds) discharge sites

(Calviño-Cancela & Martín-Herrero, 2009). For example, in grazing

ecosystems, because of livestock feeding preferences, a large number

of plant seeds accumulate in faeces (the ‘fertile island effect’) (Cai
et al., 2020). The heterogeneity in the composition between the DSB

and that of AGV indicates that the DSB is a potential driving force for

the formation of grassland patching due to grazing (Fulgoni

et al., 2020; Wang & Hou, 2021a, 2021b; Yu et al., 2012; Yu, Xu,

Wang, Shang, & Long, 2013). Moreover, in arid environments such as

the desert grassland of the study site, seed dispersal via dung pellets

provides substantial protection for seeds until sufficient rainfall occurs

to allow germination and seedling establishment, thus representing an

adaptation for survival in this type of harsh environment.

4.4 | Precipitation modulates the DSB

This study found that precipitation increased the above-ground forag-

ing resources for livestock by promoting the composition and struc-

ture of the AGV, thereby increasing the size and composition of the

livestock DSB (Figure 6). In arid regions, precipitation accelerates the

decomposition of livestock faeces (Sitters et al., 2014; Zhu

et al., 2020). Therefore, the peak periods of precipitation and plant

seed maturation are identical. In our study area, precipitation peaks in

July, August and September (Figure 2). At this time, a large number of

viable seeds collect in the faeces of livestock through ingestion and

excretion until the right time (onset of consistent precipitation) to ger-

minate (Table 2; Figure 4), eventually converting to the SSB, thus

becoming an important potential resource for grassland vegetation

renewal (Wang et al., 2019). This positive effect of livestock faeces on

the grassland is also an adaptation strategy for plants to respond to

livestock intake (i.e., grass-livestock interactions) as well as the chang-

ing environment (e.g., increasing precipitation) (Wang et al., 2019).

5 | CONCLUSIONS

In the desert grasslands of the Qaidam basin, plant seeds are con-

sumed by grazing livestock and then accumulate in faeces after pas-

sage through the digestive tract, resulting in a large number of viable

seeds in livestock dung after deposition. Precipitation promotes this

process, as it increases the productivity of grasslands in arid regions,

thereby increasing the availability of above-ground food resources to

livestock. Both the diversity and abundance of dung seedlings were

significantly greater for horses than for cattle or sheep, indicating that

horse dung makes the greatest contribution to the SSB. Moreover,

the composition of the DSB and AGV differed significantly, implying

that the DSB may increase the heterogeneity of the AGV. This study

demonstrates that the DSB is an essential driving factor for the devel-

opment of grasslands in arid areas and that the indirect effect of

F IGURE 5 Ordination diagram of the nine quadrats for the
density of the above-ground vegetation and dung seed bank over
3 years based on non-metric multidimensional scaling (NMDS). AV,
composition of the above-ground vegetation; DS, composition of the
dung seed bank. Stress value = 0.0026, n = 9 [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 6 Structural equation modelling (SEM) of the effects of
precipitation on the above ground vegetation biomass and livestock
dung seedling density, richness and diversity. Species numbers were
used for the calculations. Numbers on the arrows are standardised
path coefficients indicating the effective sizes of the relationships.
Arrow width is proportional to the strength of the relationship. The
proportion of variance explained is given as R2. *p < 0.05, **p < 0.01,
***p < 0.001. Results of model fitting: χ2 = 6.54, df = 5, p = 0.18
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precipitation on the livestock DSB for the regeneration and succes-

sion of grasslands should be considered in arid regions.
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