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A B S T R A C T   

Several studies have explored the influence of grazing or precipitation addition (PA), two important components 
of human activities and global climate change on the structure and function of communities. However, the 
response of communities to a combination of grazing and PA remains largely unexplored. We investigated the 
impact of grazing and PA on the relationship between aboveground biomass (AGB) and species richness (SR) of 
communities in three-year field experiments conducted in a typical steppe in the Loess Plateau, using a split-plot 
design with grazing as the main-plot factor and PA as the split-plot factor. AGB and SR have response threshold 
value to PA, which was decreased by grazing for AGB, but increased for SR. This indicates that implementing 
grazing management strategies is conducive to strengthening the protection of biodiversity in arid and semi-arid 
grasslands. Grazing promoted the AGB-SR coupling of the community by increasing the SR of medium drought 
tolerance (MD), low drought tolerance, and grazing tolerant functional groups. Grazing also accelerated the AGB- 
SR decoupling of the community by changing the AGB of high drought tolerance, MD, high grazing tolerance, 
and medium grazing tolerance functional groups. PA mediated changes in MD and SR of both drought and 
grazing tolerant functional groups and AGB of low grazing tolerance promoted the coupling of AGB-SR of the 
community. The Two-dimension functional groups classification method reflects the changes of AGB and SR in 
communities more reasonable than the division of single-factor functional groups.   

1. Introduction 

Among the global climate change-induced hydrological changes, one 
of the most definitive is the increase in precipitation (Donat et al., 2016), 
which has resulted in approximately 16% of the land experiencing an 
increase in seasonal precipitation, and the remaining part of the land 
facing significant interannual changes in precipitation (Zhang et al., 
2021). Grassland is the most sensitive terrestrial ecosystem to precipi-
tation changes (Sloat et al., 2018), and grazing is the predominant 

land-use mode of grasslands (Scasta et al., 2016), managing more than 
half of the global land area. The coefficient of variation of precipitation 
in 49% of the pasture has generally increased over the past century 
(Sloat et al., 2018). Although AGB and SR composition change with 
grazing and precipitation fluctuations (Fedrigo et al., 2022), the effects 
of the interaction between grazing and PA on the AGB-SR relationship is 
still unclear. 

Intensity, frequency, and inter-annual variation in precipitation are 
predicted to increase with increasing future climatic variability 
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(Berdugo et al., 2020), which may strongly impact vegetation produc-
tion across different regions (Otto et al., 2017). The AGB sensitivity to 
PA was saturated under extremely humid conditions and unaffected by 
precipitation duration (Maurer et al., 2020). However, SR sensitivity to 
PA decreases with increasing precipitation duration (Wilcox et al., 
2017). A previous study reported a positive correlation between higher 
precipitation in grasslands and SR (Bai et al., 2007). PA inhibits grass-
land biomass, however, these negative effects may weaken the increase 
in precipitation years because of plant adjustment to physiological 
and/or morphological characteristics (Li et al., 2019). Additionally, 
plants may establish a “stress memory” in their physiology after expe-
riencing extreme precipitation. Therefore, when faced with the pressure 
of PA again, they will regulate the tolerance of individuals to endure 
extreme conditions (Cheng et al., 2015) by altering morphological 
characteristics such as the root: shoot ratio (Insausti et al., 2005), or root 
and leaf structure (Shu et al., 2016), to maintain long-term ecosystem 
stability (Backhaus et al., 2014). The results indicate that the responses 
of AGB and SR to PA of vegetation show certain adaptability with an 
increase in precipitation years and will inherit and maintain this 
adaptability for a certain period. 

Grazing alters the composition of plant species, increases grassland 
coverage, and reduces shrub coverage (Lyseng et al., 2018). In 
temperate grasslands, grazing increases the AGB of weeds and decreases 
that of gramineous grass (Batbaatar et al., 2021). Higher grazing in-
tensity leads to the emergence of a large number of short and creeping 
grazing tolerant species (Rupprecht et al., 2000), which changes the 
plant community from perennial C3 grass to C4 grasses (Gonzalo et al., 
2016). Long-term grazing increases alien species (Lyseng et al., 2018) 
and positively impacts various plants but has no impact on gramineous 
plants (Bork et al., 2012). Disturbances, such as resource availability, 
grazing, and precipitation change, are considered key driving factors of 
the structure and composition of plant communities (Liu et al., 2018). In 
areas with abundant precipitation, grazing promotes SR and AGB (Wang 
et al., 2021), whereas grazing reduces SR and AGB in environments with 
little precipitation (Zhou et al., 2019). 

Species have unique tolerance and avoidance strategies for envi-
ronmental disturbance. The tolerance to grazing indicates the sensitivity 
of species to grazing, and the drought tolerance reflects the sensitivity of 
species to precipitation (Serra-Maluquer et al., 2022; Conti et al., 2022). 
Previous studies on the impacts of two-factors on vegetation charac-
teristics seldom included the sensitivity of species to factors to two 
factors, because there are few comprehensive divisions of functional 
groups according to the degree of sensitivity. Therefore, we divided the 
two-dimensional functional groups of both drought and grazing toler-
ance, which functional group based on the single factor of drought 
tolerance or grazing tolerance of populations (Fig. 1a). In term of the 

three base points theory of ecology, we extend the optimal point to three 
response phases of the functional groups along precipitation gradient, 
adaptation period (stable period at beginning), saturation period (stable 
period at end) and response period (between adaptation period and 
saturation period), and there are correspondingly three threshold 
values, adaptation point, saturation point, and optimal point (maximum 
or minimum). Grazing changed threshold values and response period 
because species sensitivity to PA, adapting grazing management 
potentially promoted AGB and SR of community under conditions of 
precipitation change (Fig. 1b). 

The typical steppe of the Loess Plateau is an important part of the 
Eurasian steppe and located at the end of the East Asian monsoon 
climate, its inter-annual precipitation variation is greater than 20% (Ye 
et al., 2019). To test the hypothesis, a three-year of PA research was 
conducted based on a 19 years of grazing experiment in order to identify 
three objectives as following: (1) divided two-dimensional functional 
groups and studied the spatiotemporal pattern of their AGB and SR in 
response to grazing and PA. (2) Observed the changes and responses of 
functional groups with PA. (3) The response of AGB-SR coupling and 
decoupling of functional groups under grazing and PA was explored, 
which provided an alternative idea for the analysis of global change 
experiments. The relevant parameters could be used to establish or 
improve the global change model or evaluation reports of the IPCC. 

2. Materials and methods 

2.1. Study site 

The research area is located in the Huanxian Grassland Agricultural 
Trial Station of Lanzhou University, Gansu Province, China (37.12◦N, 
106.84◦E, 1700 m a.s.l) (Fig. 2), which is the largest inter and intra- 
annual precipitation variability in the world (Erdős et al., 2022). 
Mean annual temperature (MAT) of 7.1 ◦C and mean annual precipita-
tion (MAP) of 326.6 mm (Hu et al., 2019). Classified as a cool 
temperate-semiarid temperate typical steppe, where the SR is about 
13–15/m2 (Ren et al., 2018). The grassland is mainly utilized for grazing 
purposes (Zhang et al., 2023). The dominant species were Stipa bun-
geana, Lespedeza bicolor, and Artemisia capillaries (Huang et al., 2022). 

2.2. Sampling and measurements 

Since 2001, a rotational grazing experiment on Tan sheep has been 
conducted at four grazing intensities and three replicates at the station 
(Chen et al., 2010). The grazing started in early June and ended in 
mid-September with 10 days of grazing and 20 days of rest in each 
paddock, with an area of 100 × 50 m. According to the previous month’s 

Fig. 1. A conceptual model of the effects of precipitation addition and grazing on communities and functional groups.  
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precipitation, PA gradients of 0%, 30%, and 60% were randomly 
established (Fig. 3) with six replicates in the paddocks of two grazing 
intensities (0 and 2.67 sheep/ha), respectively, and each plot was 2 × 2 
m with a 1 m space between two plots. PA was sprayed before or after 
sunrise. 

2.3. Classification of functional groups 

Species were classified into drought tolerance, grazing tolerance, and 
drought and grazing tolerance functional groups by integrating the plant 
morphological characteristics (Table S1). According to the degree, 
drought tolerance was classified into high drought tolerance (HD), 
medium drought tolerance (MD), and low drought tolerance (LD). Se-
lective feeding of grazing livestock was observed, and grazing tolerance 
was divided into high grazing tolerance (HG), medium grazing tolerance 
(MG), and low grazing tolerance (LG) functional groups. Plants avoided 
by livestock grazing during the growing season were considered HG 
plants. Based on the combined grazing and drought tolerance of the 
species, they were divided into high drought tolerance and high grazing 
(HDHG), medium drought tolerance and high grazing (MDHG), medium 

drought tolerance and medium grazing (MDMG), medium drought 
tolerance and low grazing (MDLG), low drought tolerance and high 
grazing (LDHG), low drought tolerance and medium grazing (LDMG), 
and low drought tolerance and low grazing (LDLG) functional groups. 
More than 30 experts were invited to evaluate the drought and grazing 
tolerance of all species. 

2.4. Calculation of indicators 

Decoupling index is adopted to describe the interactions between 
AGB and SR. The decoupling index refers to the ratio of the changing 
rate per unit increasing the fitted functions for SR and AGB (△SR/ 
△AGB). When the rate of change of SR exceeds that of AGB with a rise in 
precipitation, the Decoupling index is greater than 1. When the situation 
is reversed, the decoupling index varies from 0 to 1 but is less than 
0 when SR decreases and AGB remains unchanged (Lu et al., 2019). 

2.5. Data analysis 

The nonlinear mixed model was adopted to analyze the changing 
trends of AGB and SR of communities and functional groups in grazing 
and no grazing with total precipitation (natural precipitation + PA) 
(Figs. 4 and 5). The location of plots is used as a random factor, whereas 
the PA and grazing were taken as fixed factors. The peak value of the 
curve represents the threshold, and the data were standardized using a 
threshold value. The relative values of AGB and SR of the functional 
groups and communities under grazing and no grazing were calculated, 
and linear regression was conducted for the relative values. The distri-
bution curves for the communities, functional groups AGB, and SR under 
PA and grazing were obtained (Fig. 8). Structural equation model (SEM) 
was used to evaluate the effects of PA and grazing on AGB-SR of 
community. 

3. Results 

3.1. Effects of precipitation addition and grazing on aboveground biomass 

PA, grazing (G), and their interaction (PA*G) explained 21% (P <
0.001), 76% (P < 0.001), and 3% (P < 0.05) of the variation in com-
munity AGB, respectively. The optimal point AGB was evident when 
total precipitation was 563 and 425 mm under no grazing and grazing, 
respectively (Fig. 4 n), indicating that grazing reduced the optimum 
point of AGB for precipitation in the community. 

PA contributed 36% and 22% variations in HD and MD (P < 0.05), 
grazing contributed 86%, 91%, and 84% (P < 0.001), and PA*G 
contributed 19%, 10%, and 20% (P < 0.05) variations in the ABG of HD, 
MD, and LD, respectively. For no grazing, the AGB reached the optimum 
point of HD, MD, and LD when the total precipitation was 630, 492, and 
575 mm, while for grazing, it was 551, 798, and 396 mm, respectively. 
(Fig. 4 a-c). PA, grazing, and their interaction explained 12%, 12%, and 
14% (P < 0.05), 87%, 87%, and 80% (P < 0.001), and 30%, 30%, and 
29% (P < 0.001) of the variations in AGB of the HG, MG, and LG, 
respectively. Grazing increased the optimum point of PA for HG and MG, 
whereas it decreased for LG (Fig. 4 d-f). 

PA explained 47%, 25%, 24%, 16%, 45%, 62%, and 43% of the 
variation in AGB in the HDHG, MDHG, MDMG, MDLG, LDHG, LDMG, 
and LDLG functional groups (P < 0.001), respectively. Grazing 
explained 75%, 77%, 62%, 86%, 87%, 72%, and 70% (P < 0.001), while 
PA*G explained 31%, 29%, 43%, 48%, and 32% of the variations in AGB 
in the HDHG, MDLG, LDHG, LDMG, and LDLG function groups (P <
0.001), respectively. Grazing increased the optimum point for the AGB 
of the HDHG, MDMG, LDMG, and LDLG by 204, 34, 603, and 502 mm, 
respectively (Fig. 4 g, h, j, m), whereas it decreased the optimum point 
for AGB in MDHG and LDMG by 124 and 603 mm (Fig. 4 i, l). 

Fig. 2. Location of the study site.  

Fig. 3. The average monthly natural precipitation and precipitation addition 
over the three years. 
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Fig. 4. Effects of precipitation addition and grazing on aboveground biomass of high drought tolerant (a), medium drought tolerance (b), low drought tolerance (c), 
high grazing tolerance (d), medium grazing tolerance (e), low grazing tolerance (f), high drought tolerance and high grazing (g), medium drought tolerance and high 
grazing (h), medium drought tolerance and medium grazing (i), medium drought tolerance and low grazing (j), low drought tolerance and high grazing (k), low 
drought tolerance and medium grazing (l), low drought tolerance and low grazing (m), and community (n). 
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Fig. 5. Effects of precipitation addition and grazing on species richness of high drought tolerant (a), medium drought tolerance (b), low drought tolerance (c), high 
grazing tolerance (d), medium grazing tolerance (e), low grazing tolerance (f), high drought tolerance and high grazing (g), medium drought tolerance and high 
grazing (h), medium drought tolerance and medium grazing (i), medium drought tolerance and low grazing (j), drought tolerance and high grazing (k), low drought 
tolerance and medium grazing (l), low drought tolerance and low grazing (m) and community (n). 
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3.2. Effects of precipitation addition and grazing on species richness 

PA, grazing, and PA*G explained 21%, 76%, and 3% variation of 
community SR (P < 0.001), respectively. SR was maximum when total 
precipitation was 545 and 537 mm under no grazing and grazing (Fig. 5 
n), which indicated that grazing promoted the optimum point for SR in 
the community. 

PA contributed 56%, 40%, and 31% variations of the HD, MD, and 
LD functional groups (P < 0.001), while grazing contributed 19%, 3%, 
and 34% (P < 0.05). Whereas, PA*G contributed 28% variations of the 
HD functional groups SR (P < 0.001). For no grazing, the SR for HD, MD, 
and LD reached the peak values at 504, 90, and 430 mm total precipi-
tation, while for grazing it reached maximum values at 594, 1025, and 
437 mm (Fig. 5 a-c). These results indicated that grazing increased the 
optimum point for SR in HD, MD, and LD functional groups. 

The contribution of PA and grazing were 12% and 70% to variations 
of SR in HG, 27% and 72% SR in MG, while 27% and 44% SR in LG, 
respectively. In addition, PA*G explained 53% and 11% variations of the 
SR in HG and MG (P < 0.001). For no grazing, the peak SR values for HG, 
MG, and LG were achieved at total precipitation of 350, 628, and 496 
mm, while for grazing peak values were achieved at 485, 250, and 435 
mm, respectively (Fig. 5 d-f). PA contributed 44%, 20%, 48%, 14%, and 

14% variations of the LDHG, MDHG, MDMG, LDMG, and LDLG function 
groups’ SR (P < 0.05), respectively. Grazing contributed 78%, 84%, 
80%, 29%, 61%, 71%, and 50% variations of the HDHG, MDHG, MDMG, 
MDLG, LDHG, LDMG, and LDLG (P < 0.001), respectively. PA*G 
contributed 21% SR variations of LDMG functional group (P < 0.05). 

3.3. Coupling and decoupling between aboveground biomass and species 
richness 

Grazing promoted the decoupling of the AGB-SR relationship of the 
drought tolerance functional group at PA gradients, indicating that PA 
and grazing led to the instability of the drought tolerance functional 
group (DTF) (Fig. 6). The growth rates of SR for MD and LD were lower 
than that for AGB. Furthermore, the growth rate of SR for the HD was 
lower than that for AGB when the precipitation was lower than 550 mm, 
whereas the opposite was observed when it was greater than 550 mm. 
Grazing inhibited the decoupling of the AGB-SR relationship of the 
grazing tolerance functional group across the PA gradients, and the SR 
for the HG, MG, and LG decreased with PA, whereas it remained un-
changed for AGB. These results indicated that grazing promoted the 
coupling of AGB-SR in the grazing tolerance functional group (GTF), 
thus maintaining the stability of the GTF. In addition, grazing promoted 

Fig. 6. Effects of precipitation addition and grazing 
on the decoupling index of high drought tolerant (a), 
medium drought tolerance (b), low drought tolerance 
(c), high grazing tolerance (d), medium grazing 
tolerance (e), low grazing tolerance (f), high drought 
tolerance and high grazing (g), medium drought 
tolerance and high grazing (h), medium drought 
tolerance and medium grazing (i), medium drought 
tolerance and low grazing(j), drought tolerance and 
high grazing (k), low drought tolerance and medium 
grazing (l), low drought tolerance and low grazing 
(m), and community (n).   
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the AGB-SR decoupling of the HDHG, MDMG, MDHG, and LDHG and 
inhibited the AGB-SR decoupling of MDLG, LDMG, and LDLG. The 
growth rate of SR for the MDHG and LDHG was lower than that for AGB. 
The SR for the HDHG, MDLG, and LDMG decreased with the PA 
gradient, whereas the AGB remained unchanged. 

3.4. Analysis of driving forces affecting the relationship between 
aboveground biomass and species richness of communities 

Grazing promoted the increase of community SR by increasing the 
MD and LD functional group SR, promoting the coupling of the com-
munity AGB-SR relationship. Simultaneously, grazing also inhibited the 
coupling of the AGB-SR relationship of the community by promoting 
changes in the AGB of HD and MD. Although grazing increased the AGB 
of HD, MD, and LD, thus promoting changes in community AGB, com-
munity AGB did not affect the coupling of community AGB-SR re-
lationships (Fig. 7 a). PA mainly changed the SR of the community by 
reducing the SR of MD and increasing the AGB of HD, consequently 

promoting the coupling of AGB-SR relationships in the community 
(Fig. 7 a). 

Grazing promoted changes in community AGB by increasing the AGB 
of HG and MG, which inhibited the coupling of the community AGB-SR 
relationship. Grazing also increased community SR by increasing the SR 
of the HG, MG, and LG, which further promoted the coupling of the 
community AGB-SR relationship. In contrast, PA affected community 
AGB by promoting the AGB of the HG, inhibiting the coupling of the 
community AGB-SR relationship. In addition, PA also promoted the 
coupling of the community AGB-SR relationship by mediating the 
change in the LG (Fig. 7b). 

Grazing promoted changes in community SR by increasing the SR of 
DGT, which promoted the coupling of the community AGB-SR rela-
tionship. PA also promoted the coupling of community AGB-SR re-
lationships through the mediation of the DGT and community SR. 
However, although grazing and PA increased the AGB of the DGT, this 
change did not affect the coupling of AGB-SR relationships in the com-
munity through the mediation of the DGT but directly affected the AGB- 

Fig. 7. Analysis of the SEM for drought tolerant functional group (a), grazing tolerant functional group (b), both drought and grazing tolerant functional group (c), 
and the effects of various factors on AGB, SR, and AGB-SR (d). 
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SR of the community (Fig. 7c). Grazing and PA promoted the coupling of 
AGB, SR, and AGB-SR, however, the total effect of grazing was always 
greater than that of PA. 

Grazing promoted changes in community SR by increasing the SR of 
the DGT, which promoted the coupling of the community AGB-SR 
relationship. PA also promoted the coupling of community AGB-SR re-
lationships through the mediation of the DGT and community SR. 
However, although grazing and PA increased the AGB of the DGT, this 
change did not affect the coupling of AGB-SR relationships in the 

community through the mediation of the DGT but directly affected the 
AGB-SR of the community (Fig. 7 c). Grazing and PA promoted the 
coupling of AGB, SR, and AGB-SR. However, the total effect of grazing 
was always greater than that of PA. 

The AGB of MDHG, LD, and LG in grazing shows deficit saturation 
(lower than the beginning), while the AGB of HD, HG, HDHG, MDLG, 
LDLG, LDHG, LDMG, and community in grazing and no grazing belongs 
to super saturation (the maximum value), the same as AGB of MD, LD, 
MG, LG, MDMG in no grazing and AGB of MD, MG, MDMG in grazing 

Fig. 8. Changes in functional groups (c and d) and community (a and b) traits under precipitation addition and grazing conditions.  
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(Fig. 4). SR of HG, MG, LG, LD, HDHG, MDLG, LDHG, MDMG, and 
community in grazing and no grazing and MDLG in no grazing belongs 
to deficit saturation, while the SR of HD, MDHG, LDLG, LDMG in grazing 
and no grazing and SR of MD in grazing shows super saturation (Fig. 5). 
Our hypothesis only considers the deficit saturation and missed the 
super saturation. However, sufficient saturation (higher than the 
beginning) and equal saturation (same as the value at beginning) of AGB 
and SR of functional groups also appeared with the PA (Fig. 8 e and f), 
which identified that our results validated and extended the hypothesis. 

4. Discussion 

4.1. Response of functional groups to precipitation addition and grazing 

Three functional group classification techniques were used to sum-
marize and highlight the consistent responses of grassland ecosystems to 
complex environments (Anja et al., 2014). The fundamental principle of 
this classification method is to classify various species that have com-
parable responses to PA or grazing into new functional groups (Pontes 
et al., 2012). Our study only verified deficit saturation and super satu-
ration. We still need longer tests and more data analysis to determine the 
threshold of sufficient saturation and equal saturation. The interpreta-
tion degrees of drought tolerance, grazing tolerance, and both drought 
and grazing tolerance AGB were 16%, 30%, and 37%, respectively 
(Fig. 4), and the interpretation degrees of SR were 28%, 11%, and 21% 
(Fig. 5), which were 4–12 times higher than that of the community. 
These findings show that functional groups better reflect the function 
and composition of an ecosystem and more reasonable than commu-
nities for studying in complex environments. The classification method 
of two-dimension functional groups reflected the responses of AGB and 
SR to precipitation more reasonable than those of the single-factor 
functional groups (Figs. 7 and 8). Therefore, replenishing the seeds of 
both drought and grazing tolerant functional groups or strengthening 
grazing management during the breeding period of the forage will 
promote the germination of its soil seed bank, which is conducive to 
further improving grassland productivity. 

4.2. Effects of precipitation addition and grazing on aboveground biomass 
and species richness of community 

Significant differences in the responses of functional groups to PA 
and grazing led to an increased or decreased in the threshold values of 
AGB and SR for each functional group under PA and grazing (Figs. 3 and 
4). Simultaneously, PA and grazing promoted the threshold of AGB and 
SR of communities in response to precipitation. A possible reason for the 
perceived results might be the stronger synergistic effects among plants 
than the competitive effects under environmental stress in low- 
precipitation resource habitats (Wang et al., 2022). Therefore, the 
relationship between the AGB-SR of communities and PA was also 
positive. In addition, the vegetation in the low-precipitation resource 
habitat has a certain adaptability (Bai et al., 2022) and resistance to 
environmental stress, the functional group may have an adaptation 
period in the area with low precipitation (Rauschkolb et al., 2022). In 
medium and high precipitation resource habitats, both interspecific 
competition and negative soil feedback effects were strong (Luo et al., 
2017), and the interaction between plants also changes from comple-
mentary to competitive which could lead to a negative relationship 
between plant AGB-SR and PA (Du et al., 2022). The AGB and SR of the 
functional groups did not change significantly with an increase in pre-
cipitation when the PA increased to a certain extent. This is because of 
the vegetation saturation effect on precipitation, resulting in the com-
munity entering a saturative period (Xu et al., 2022). Essentially, these 
results were consistent with the principle of the standard “single peak” 
relationship between AGB and SR along the resource gradient, revealed 
in the pressure gradient hypothesis (Du et al., 2022). 

Grazing increased the thresholds of AGB and SR to precipitation by 

96 and 50 mm, respectively (Fig. 8). As a result, the grazing rate 
increased by 1 sheep/ha, the water consumption increased by 36 mm, 
and the AGB and SR of the community increased by an average of 48 g/ 
m2 and 4 species/m2 under PA conditions. These findings indicate that 
grazing improves AGB and SR as well as results in greater livestock 
products in rain-fed agricultural ecosystems. Adjust grassland manage-
ment strategies and appropriately increase grazing intensity in years 
with high precipitation. One possible result of this phenomenon is that 
grazing removed the aboveground part of vegetation and reduced light 
restriction (Elizabeth et al., 2014), enhanced solar radiation and 
increased soil temperature (Li et al., 2021a, b), and promoted the for-
mation of a microclimate (Schnitzer et al., 2015), thus improving the 
water use efficiency of vegetation. In addition, grazing activates the 
germination of dormant buds of some functional groups and stimulates 
the regeneration ability of vegetation, increasing water utilization. 
Another possible reason could be the potential of grazing to stimulate 
plant growth (Michaletz et al., 2018), particularly in sufficient water 
resources. Furthermore, an increase in precipitation improves the ab-
sorption of mineral resources by plant roots, enhances soil microbial 
activity, and stimulates the absorption of soil nutrients and water (Zhou 
et al., 2019) consequently promoting the plant growth. In addition, 
grazing results in soil compaction (Mu et al., 2016), decreased soil 
aeration and water permeability, reduced infiltration (Jones et al., 
2019) and increased surface runoff (Slessarev et al., 2016). Therefore, 
only high amounts of precipitation can ensure sufficient plant infiltra-
tion and utilization. 

4.3. Effects of precipitation addition and grazing on the relationship 
between aboveground biomass and species richness 

The effects of PA and grazing on AGB and SR of the community were 
not synchronous. They first affected community function and then 
composition (Fig. 8 a and b). This conclusion provides new scientific 
evidence that the AGB-SR relationship is complex and changeable at the 
mechanism level (Pan et al., 2021). A potential explanation is that PA 
promotes an increase in AGB in the community (Zheng et al., 2019), 
which provides more litter for the community. Consequently, litter helps 
to improve the availability of grassland temperature, precipitation, and 
other resources and accelerates the decomposition of substances and 
nutrient return (Zhang et al., 2022a), thus directly promoting the in-
crease in AGB of the community. Second, the legacy effect is another 
potential mechanism to explain why the PA and grazing effects on AGB 
are greater than those of SR. Grazing and PA had noticeable residual 
effects, and the effect of AGB on AGB in the following year (y =
0.9595x+5.9599 R2 = 0.9098 P < 0.001) was stronger than that on SR 
(y = 0.0599x+7.0676 R2 = 0.4431 P < 0.001), resulting in a higher 
growth rate of AGB in the community-than that of SR, which was also 
supported by Wang et al. (2021). Finally, resource types and abundance 
affected the AGB and SR communities to varying degrees. SR may be 
limited by the local species pool (Huston, 2014), whereas AGB may be 
limited by light or heat (Huang et al., 2019) resources. With the increase 
in precipitation, the competition between species shifts from water re-
sources to light resources, resulting in the substitution of 
drought-tolerant species (Demalach et al., 2016) by 
non-drought-tolerant species through asymmetric light competition. 
This asymmetry of resource allocation accelerates the speed of 
competitive exclusion, as well as inhibits the increase in community SR 
(James et al. 2016). Therefore, uncertain resource effects, such as heat, 
changes in the local species pool, and different responses of species to 
light competition may also lead to asynchronous changes in AGB and SR. 

Dominant functional groups control the energy flow and biogeo-
chemical cycles of ecosystems (Liu et al., 2022). Owing to their high AGB 
and wide community distribution, they are not easily affected by PA and 
grazing (Avolio et al., 2019). The proportions of AGB and SR in the 
community MD, MG, and MDMG functional groups were approximately 
half. Under PA and grazing conditions, these dominant functional 
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groups had no significant effect on the AGB-SR relationship of the 
community. In contrast, other sensitive functional groups that accoun-
ted for less than half of the community promoted changes in the AGB-SR 
relationship of the community (). These findings demonstrated that the 
primary mechanism altering the function and composition of grassland 
ecosystems was changes in the community AGB-SR relationship, which 
were mediated by functional groups that were extremely sensitive (the 
highest or the lowest) to PA or grazing. Functional groups with moderate 
drought or grazing tolerance play a major role in maintaining commu-
nity stability. This might be because sensitive or rare functional groups 
have low resistance (Zhang et al., 2022b) to PA and grazing disturbance, 
resulting in the instability of community function and composition. 
Additionally, the findings supported our hypothesis that the ecosystem 
has moderate disturbance (Chen et al., 2022). 

4.4. Implementation of this study and limitation 

The study divided two-dimensional functional groups and clarified 
the changing trend and response threshold of AGB and SR in each 
functional group under PA and grazing. This is an extension of the three 
base points theory and the moderate grazing hypothesis, providing a 
scientific basis for adaptive management of grazing under global change 
conditions. The limitation of the study is that we need longer test and 
more data analysis to determine the threshold of sufficient saturation 
and equal saturation. The two-dimensional function group classification 
method of the feasibility will be sufficient improved if the traditional 
and new methods combined in future research. 

5. Conclusions 

The effect of grazing on the AGB and SR of the community is not 
synchronous with PA, and its effect on AGB is faster than that of SR. PA 
potentially improves water use efficiency and enhances the protection of 
biodiversity in the grazing lands of semi-arid regions, which could play 
an important role in decision making of regional ecological protection. 
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